Juan Andrés Cabral

Continuity 2

Given the following function:
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1. Compute the iterated and radial limits. Can it be concluded that the double limit exists?
2. Now consider the following piecewise function:
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Find the value of a such that the function is continuous at (0, 0).
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1. Iterated limits:
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Radial limit:
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2. For the function to be continuous, the function evaluated at the point must be equal to the limit. We

calculate the limit:
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We see that izi;gy; is bounded:
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And by the theorem of the limit of an infinitesimal times a bounded function:
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Therefore, for the function to be continuous, it must hold that a = 10.
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