

Continuity 2

Given the following function:

$$\frac{x^2 - xy}{x + y}$$

1. Compute the iterated and radial limits. Can it be concluded that the double limit exists?
2. Now consider the following piecewise function:

$$f(x, y) = \begin{cases} \frac{x^3 - xy^2}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ a - 10 & \text{if } (x, y) = (0, 0) \end{cases}$$

Find the value of a such that the function is continuous at $(0, 0)$.

1. Iterated limits:

$$L_1 = \lim_{y \rightarrow 0} \left[\lim_{x \rightarrow 0} \frac{x^3 - xy^2}{x^2 + y^2} \right] = 0$$

$$L_2 = \lim_{x \rightarrow 0} \left[\lim_{y \rightarrow 0} \frac{x^3 - xy^2}{x^2 + y^2} \right] = \lim_{x \rightarrow 0} \frac{x^3}{x^2} = \lim_{x \rightarrow 0} x = 0$$

Radial limit:

$$y = mx$$

$$\lim_{x \rightarrow 0} \frac{x^3 - x^3 m^2}{x^2 + m^2 x^2} = \lim_{x \rightarrow 0} \frac{x(1 - m^2)}{1 + m^2} = 0$$

2. For the function to be continuous, the function evaluated at the point must be equal to the limit. We calculate the limit:

$$\lim_{(x,y) \rightarrow (0,0)} \frac{x^3 - xy^2}{x^2 + y^2} = \lim_{(x,y) \rightarrow (0,0)} x \frac{x^2 - y^2}{x^2 + y^2}$$

We see that $\frac{x^2 - y^2}{x^2 + y^2}$ is bounded:

$$x^2 + y^2 \geq x^2 - y^2$$

$$1 \geq \frac{x^2 - y^2}{x^2 + y^2}$$

Furthermore:

$$-x^2 - y^2 \leq x^2 - y^2$$

$$-(x^2 + y^2) \leq x^2 - y^2$$

$$-1 \leq \frac{x^2 - y^2}{x^2 + y^2}$$

Therefore:

$$-1 \leq \frac{x^2 - y^2}{x^2 + y^2} \leq 1$$

And by the theorem of the limit of an infinitesimal times a bounded function:

$$\lim_{(x,y) \rightarrow (0,0)} x \frac{x^2 - y^2}{x^2 + y^2} = 0$$

Therefore, for the function to be continuous, it must hold that $a = 10$.